If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+8t+70=0
a = -4.9; b = 8; c = +70;
Δ = b2-4ac
Δ = 82-4·(-4.9)·70
Δ = 1436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1436}=\sqrt{4*359}=\sqrt{4}*\sqrt{359}=2\sqrt{359}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{359}}{2*-4.9}=\frac{-8-2\sqrt{359}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{359}}{2*-4.9}=\frac{-8+2\sqrt{359}}{-9.8} $
| 4x/(3x-8)=7 | | 0.9+0.3(x+12)=6 | | 0=3.86+(-9.81)t | | P=23+.575x | | 5(20-x)=1/2(4x+4) | | 5x+76=10x+17 | | 32x°+X=36 | | C(0)=5x+55 | | 2/3x-1/6=3/2x+1 | | x+5/8=6 | | 6(x3)=2(x+5) | | 35(r−7)=1 | | 10x+17-(x-9)=3x+1/2 | | -18=4z–10 | | 5a^2-14a+18=0 | | -17=-7b+6(1+5b) | | 36x=(1/6)-X | | 9w–1=8w | | -x-15=-6 | | -9b-7=-16 | | (X^2)-(1/3)x=0 | | -3x-32=19 | | 18=p/12 | | -9=6-3x | | -33=-x/2 | | -x-20=45 | | 7.7-0.9x=5.9 | | 5x-18=x+10 | | 15=2a+17 | | 2,1/2x-3/4(2x+5)=3/8 | | -2x-9=13 | | -2=-1+x/16 |